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A driver state estimation algorithm that uses multimodal vehicular and
physiological sensor data is proposed. Deep learning is applied to the
fused multimodal data rather than each modality being treated as a
different feature. A convolutional neural network model is developed
and the driver state estimation algorithm is implemented using
Google TensorFlow. The results show that deep learning is a very
promising approach for driver state estimation compared with pre-
viously studied algorithms, such as dynamic Bayesian networks.

Introduction: Approximately 94% of all car accidents are caused by
driver error and 75% of this total is due to recognition and decision
errors [1]. The identification of abnormal driver states, such as drowsi-
ness, distraction, and high workload, is essential for preventing
human-error-related car accidents. State-of-the-art sensor technologies
enable the measurement of vehicle- and driver-related signals. With
the development of sensor technology and on-board computational
units, systems for identifying and warning drivers (or even controlling
the cars themselves) are becoming essential features in next-generation
vehicles. One of the key technical issues that must be solved in the
development of autonomous vehicles is human–machine interaction,
which includes driver state estimation and countermeasures.

In this Letter, we estimated the states of driver drowsiness, visual dis-
traction, cognitive distraction, and high workload of multiple subjects
based on sensory data collected from a driving simulator.

We then developed a driver state detection algorithm based on deep
learning and demonstrated its performance. Deep learning has been suc-
cessfully applied in many areas, including computer vision, speech rec-
ognition, and multimodal data fusion [2, 3]. We use both driver
physiological data and vehicle data collected in the simulated driving
environment. Our approach was to use the deep learning algorithm,
which has rarely been used in driver state estimation using multimodal
data to address the driver state detection problem. Rather than treating
types of data differently, we fused the multimodal data time sequence
using a two-dimensional matrix, wherein one dimension is used for
different sensor data and the other is used for time.

We examined the correct detection rate (CDR) and false alarm rate
(FAR) for our driver state estimation problems, and then compared
them with the performance of a previous study that employed the
dynamic Bayesian network model [4].

Vehicle and physiology data: Study participants included 35 subjects in
their 20 and 30 s from whom we collected vehicle and human data for
the four abnormal driver states and one normal state. The subjects
were given driving and non-driving tasks in a simulated driving environ-
ment, as shown in Fig. 1. We obtained drowsiness data from driving
simulator experiments in which the subjects were asked to sleep no
more than 4 h the night before the experiment. We obtained visual dis-
traction data by giving the subjects secondary tasks such as mobile
phone activities while they were driving. We obtained cognitive distrac-
tion data by giving the subjects tasks such as speaker-phone mode con-
versations with the experimenter. We obtained high workload data by
having the subjects drive in a stressful environment in which the
vehicle in front of the driver’s car made frequent sudden stops after
the subjects had been asked to drive at a speed of 40 km/h. We
assumed that abnormal states occurred during all study sections in
which a task had been assigned. Details of the experimental set-up
and apparatus can be found in [4, 5].

Vehicle, vision, voice, and physiological information were collected
by relevant sensor systems installed in the driving simulator environ-
ment. The sampling frequency of the data was 30 Hz. Vehicle infor-
mation included the vehicle’s velocity, longitudinal acceleration,
lateral acceleration, steering wheel angle, and gas pedal angle. Vision
information included the participants’ blinking rate, percentage of eye
closure, and facial direction. Voice information included the partici-
pants’ audio amplitudes. Physiological information included the partici-
pants’ heart rate, respiration rate, galvanic skin response, and body
temperature.

We separated the data into training, validation, and test sets. We used
the training and validation data sets to train our model, and used the test
data set to test the performance of our trained model.

Convolutional neural network model: The objective of this Letter was
to determine driver state as falling into one of the following categories:
drowsiness, visual distraction, cognitive distraction, high workload, or
normal.

Fig. 1 Driving simulator

We used convolutional neural network (CNN) with rectified linear
units (ReLUs), max pooling, dropout, and softmax regression. CNNs
are feed-forward neural networks designed to deal with large input
spaces, such as those seen in image classification tasks. CNNs are con-
structed by alternatively stacking convolutional and pooling layers.

The structure of our CNN is shown in Fig. 2. We based our CNN on
our intuition that there should be some local pattern in time and between
the multimodal sensor data. This pattern primitively captures a signal
when the driver state is abnormal. Using the CNN approach, we can
prevent overfitting of the data as well as reduce the computational cost.
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Fig. 2 CNN model

We used a 32 × 44 matrix as the input for our CNN model, where 32
represents the number of samples in 0.1 s time slots used, and 44 is the
number of data collected from the four kinds of sensors used in this
study. We used two convolution layers followed by max pooling
layers. Convolutional layer 1 has 5 × 5 filters and a depth of 32, and con-
volutional layer 2 has 5 × 5 filters and a depth of 64. We used ReLU as
an activation function for each neuron in the convolutional layers. Then,
we connected the output of layer 2 to a fully connected layer with a
depth of 512, followed by a 0.5 dropout rate. Finally, we used
softmax regression to obtain the desired output: the probability of the
driver being in a normal state or one of the abnormal states of drowsi-
ness, visual distraction, cognitive distraction, and high workload.

Result: Using the driving simulator environment equipped with multi-
modal sensor systems, we collected about 4 h of driving data for each
state: drowsiness, visual distraction, cognitive distraction, high work-
load, and normal. We divided the data into training and test data sets,
and chunked the data into 32 × 44 matrices, to be fed into our CNN
model. We labelled each input according to the driver’s state when
the data was collected.

We used Google’s TensorFlow Application Programming Interface to
implement our CNN model [6], and trained the model on a server com-
puter with two 14-core 2.4 GHz CPUs and 64 GB of RAM. We see in
Fig. 3 that the loss function decreases as the number of training iterations
increases. We computed the loss function as a cross-entropy over the
softmax regression output of the final full layer of the CNN model,
plus a regularisation term. Fig. 4 shows the trained filter outputs for
CNN layers 1 and 2, in which the visual patterns in the multimodal
sensor data are identified. The time taken to train the data was about
100 min. After training the CNN with the training data, we tested the
performance using the test data on a laptop computer with a quad-core
2.2 GHz CPUs and 16 GB of RAM.
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